empyscripts Documentation
Release 0.3.1

Dieter Werthmuller

24 February 2018

Contents

1 More information 3
2 License information 5
2.1 Manual e e e e e e 5
2.2 Changelog e e e e e e e 5
2.3 CreditS o e e e e e e e 6
2.4 Codeo e 6
Bibliography 19
Python Module Index 21

empyscripts Documentation, Release 0.3.1

Version: 0.3.1 ~ Date: 24 February 2018

The empyscripts are add-ons for the electromagnetic modeller empymod. These add-ons provide some very
specific, additional functionalities:

e tmtemod: Return up- and down-going TM/TE-mode contributions for x-directed electric sources and
receivers, which are located in the same layer.

* fdesign: Design digital linear filters for the Hankel and Fourier transforms.

There is also empyscripts.versions (), which can be used to show date, time, and package version infor-
mation at the end of a notebook or script:

e versions ("HTML') for Jupyter Notebooks, and
e versions () for IPython, QT, and Python consoles.

See https://empymod.github.io/#features for a complete list of features of empymod.

Contents 1

https://empymod.github.io/#features

empyscripts Documentation, Release 0.3.1

2 Contents

cHAPTER 1

More information

For more information regarding installation, usage, add-ons, contributing, roadmap, bug reports, and much more,
see

e Website: https://empymod.github.io,

* Documentation empymod: https://empymod.readthedocs.io,
* Documentation add-ons: https://empyscripts.readthedocs.io,
* Source Code: https://github.com/empymod,

e Examples: https://github.com/empymod/example-notebooks.

https://empymod.github.io
https://empymod.readthedocs.io
https://empyscripts.readthedocs.io
https://github.com/empymod
https://github.com/empymod/example-notebooks

empyscripts Documentation, Release 0.3.1

4 Chapter 1. More information

CHAPTER 2

License information

Copyright 2017-2018 Dieter Werthmiiller

Licensed under the Apache License, Version 2.0. See the LICENSE-file or the documentation for more informa-
tion.

2.1 Manual

Documentation for empyscripts, the add-ons for empymod.

The add-ons are all independent of each other, and have their own documentation. You can find the information
of each add-on in the respective Code-section.

For more information regarding installation, usage, add-ons, contributing, roadmap, bug reports, and much more,
see https://empymod.github.io.

2.1.1 License

Copyright 2017-2018 Dieter Werthmiiller

Licensed under the Apache License, Version 2.0 (the “License’”); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

2.1.2 References
2.2 Changelog

2.2.1 v0.3.1 - 2018-02-24

* Add sphinx-docs, https://empyscripts.readthedocs.io

https://empymod.github.io
http://www.apache.org/licenses/LICENSE-2.0
https://empyscripts.readthedocs.io

empyscripts Documentation, Release 0.3.1

2.2.2 v0.3.0 - 2018-01-25

* New utility printinfo.

2.2.3 v0.2.0 - 2018-01-09

¢ New add-on fdesign.

* Now has tests and TravisCI, coveralls integration.

2.2.4 v0.1.1 - 2017-09-22

e Initial release; add-on tmtemod.

2.3 Credits

Thanks to

* Evert Slob for the feedback and interaction during the creation of the add-on tmt emod, which was devel-
oped for the creation of github.com/empymod/csem-ziolkowski-and-slob.

¢ Kerry Key and Evert Slob for their inputs and feedback during the development of the add-on fdesign
(see github.com/empymod/article-fdesign).

2.4 Code

2.4.1 Digital linear filter (DLF) design

Add-on for empymod, [Werthmuller_2017].

The add-on fdesign can be used to design digital linear filters for the Hankel or Fourier transform, or for any linear
transform (/Ghosh_1970]). For this included or provided theoretical transform pairs can be used. Alternatively,
one can use the EM modeller empymod to use the responses to an arbitrary 1D model as numerical transform pair.

More information can be found in the following places:
* The article about fdesign is in the repo https://github.com/empymod/article-fdesign

e Example notebooks to design a filter can be found in the repo https://github.com/empymod/
example-notebooks

This filter designing tool uses the direct matrix inversion method as described in [Kong_2007] and is based on
scripts by [Key_2012]. The whole project of fdesign started with the Matlab scripts from Kerry Key, which
he used to design his filters for [Key_2009], [Key_2012]. Fruitful discussions with Evert Slob and Kerry Key
improved the add-on substantially.

Note that the use of empymod to create numerical transform pairs is, as of now, only implemented for the Hankel
transform.

Implemented analytical transform pairs

The following tables list the transform pairs which are implemented by default. Any other transform pair can be
provided as input. A transform pair is defined in the following way:

6 Chapter 2. License information

https://github.com/empymod/csem-ziolkowski-and-slob
https://github.com/empymod/article-fdesign
https://github.com/empymod/article-fdesign
https://github.com/empymod/example-notebooks
https://github.com/empymod/example-notebooks

empyscripts Documentation, Release 0.3.1

from empyscripts.fdesign import Ghosh

def my_tp_pair(var):
"'"'My transform pair.'''

def lhs(1l):
return func(l, var)

def rhs(r):
return func(r, var)

return Ghosh (name, lhs, rhs)

Here, name must be one of j0, j1, sin, or cos, depending what type of transform pair it is. Additional variables
are provided with var. The evaluation points of the 1hs are denoted by 1, and the evaluation points of the rhs
are denoted as r. As an example here the implemented transform pair 70_1

def j0_1(a=1):
""'Hankel transform pair JO0_1 ([Anderson_1975]_)."""

def lhs(1l):
return l+np.exp(-axlxx2)

def rhs(r):
return np.exp (-r++2/ (4*a))/ (2*a)

return Ghosh('j0', lhs, rhs)

Implemented Hankel transforms

* j0_1 [Anderson_1975]

oo ()
/ Lexp (—al?) Jo(Ir)dl = — 22
0

2a

* 30_2 [Anderson_1975]

1

—al) Jy(Ir)dl = ——=
[, et it = Zes

* j0_3 [Guptasarma_and_Singh_1997]

[e%e) a
/0 lexp (—al) Jo(Ir)dl = m

e 30_4 [Chave_and_Cox_1982]
< exp (—R)
—exp (—Bzy) Jo(lr)dl = ————
| e 2 -
¢ 30_5 [Chave_and_Cox_1982]
e (YR +1
/ lexp (—Bzy) Jo(lr)dl = % exp (—vR)
0
* 31_1 [Anderson_1975]

e 2 r r?
; I? exp (—al®) Ji(Ir)dl = 12 P\

2.4. Code 7

empyscripts Documentation, Release 0.3.1

e 31_2 [Anderson_1975]

vaZz4+r2—aqa

—al) Ji(Ir)dl =
[ewtcarnma =T

* j1_3 [Anderson_1975]
o0 r
/O leXp (7(11) Jl(l'l")dl = m
e 31_4 [Chave_and_Cox_1982]

<2 R+1
—exp (—Bzy) J1(Ir)dl = %

3 exp (—7R)

* j1_5 [Chave_and_Cox_1982]

72y (V2 R% 4+ 3yR + 3)
RS

/0°° 12 exp (—fBz,) Ji(Ir)dl = exp (—7R)

Where

a>0,7>0

2y = |Zrec — Zsrel
R=+/r?+22

v =/2jmuof/p
B=VE+s?

Implemented Fourier transforms

e sin_1 [Anderson_1975]

e 2
/0 Lexp (—a®1?) sin(lr)dl = \4/67;: exp <422>

e sin_2 [Anderson_1975]

r
a2 + r?

/ exp (—al) sin(lr)dl =
0
e sin_3 [Anderson_1975]
/OO L sin(lr)dl = Te (—ar)
0 (12 + 12 o 2 *P

e cos_1 [Anderson_1975]
00 2
/0 exp (—a®l?) cos(lr)dl = 2—\/5 exp <—4Ta2)

e cos_2 [Anderson_1975]

a

/0 exp (—al) cos(lr)dl = o

8 Chapter 2. License information

empyscripts Documentation, Release 0.3.1

e cos_3 [Anderson_1975]

< 1
/0 po cos(lr)dl = 2% exp (—ar)

empyscripts.fdesign.design (n, spacing, shift, fI, fC=False, r=None, r_def=(1, 1,
2), reim=None, cvar="amp’, error=0.01, name=None,
full_output=False, finish=False, save=True, verb=2, plot=1)

Digital linear filter (DLF) design

This routine can be used to design digital linear filters for the Hankel or Fourier transform, or for any
linear transform (/Ghosh_1970]). For this included or provided theoretical transform pairs can be used.
Alternatively, one can use the EM modeller empymod to use the responses to an arbitrary 1D model as
numerical transform pair.

This filter designing tool uses the direct matrix inversion method as described in [Kong_2007] and is
based on scripts by [Key_2012]. The tool is an add-on to the electromagnetic modeller empymod
[Werthmuller_2017]. Fruitful discussions with Evert Slob and Kerry Key improved the add-on substan-
tially.

Example notebooks of its usage can be found in the repo github.com/empymod/example-notebooks.
Parameters n : int
Filter length.
spacing: float or tuple (start, stop, num)

Spacing between filter points. If tuple, it corresponds to the input for np.linspace
with endpoint=True.

shift: float or tuple (start, stop, num)

Shift of base from zero. If tuple, it corresponds to the input for np.linspace with
endpoint=True.

fI, fC : transform pairs

Theoretical or numerical transform pair(s) for the inversion (I) and for the check of
goodness (fC). fC is optional. If not provided, fI is used for both I and {C.

r : array, optional

Right-hand side evaluation points for the check of goodness (fC). Defaults to r =
np.logspace(0, 5, 1000), which are a lot of evaluation points, and depending on the
transform pair way too long r’s.

r_def : tuple (add_left, add_right, factor), optional

Definition of the right-hand side evaluation points r of the inversion. r is derived
from the base values, default is (1, 1, 2).

* rmin = logl10(1/max(base)) - add_left
e rmax = log10(1/min(base)) + add_right
* r =logspace(rmin, rmax, factor*n)
reim : np.real or np.imag, optional
Which part of complex transform pairs is used for the inversion. Defaults to np.real.

cvar : string { ‘amp’, ‘r’}, optional

If ‘amp’, the inversion minimizes the amplitude. If ‘r’, the inversion maximizes the
right-hand side evaluation point r. Defaults is ‘amp’.

error : float, optional

Up to which relative error the transformation is considered good in the evaluation
of the goodness. Default is 0.01 (1 %).

2.4. Code 9

https://github.com/empymod/example-notebooks

empyscripts Documentation, Release 0.3.1

name : str, optional
Name of the filter. Defaults to dIf_+str(n).
full_output : bool, optional

If True, returns best filter and output from scipy.optimize.brute; else only filter.
Default is False.

finish : None, True, or callable, optional

If callable, it is passed through to scipy.optimize.brute: minimization function to
find minimize best result from brute-force approach. Default is None. You can
simply provide True in order to use scipy.optimize.fmin_powell(). Set this to None
if you are only interested in the actually provided spacing/shift-values.

save : bool, optional

If True, best filter is saved to ./filters/name.dir/.bak/.dat with shelve. Can be loaded
with fdesign.load_filter(name).

verb : {0, 1, 2}, optional
Level of verbosity, default is 2:
* 0: Print nothing.
* 1: Print warnings.
 2: Print additional time, progress, and result
plot : {0, 1, 2, 3}, optional
Level of plot-verbosity, default is 1:
* (: Plot nothing.
* 1: Plot brute-force result
* 2: Plot additional theoretical transform pairs, and best inv.

 3: Plot additional inversion result (can result in lots of plots depending on
spacing and shift) If you are using a notebook, use %matplotlib notebook to
have all inversion results appear in the same plot.

Returns filter : empymod.filter.DigitalFilter instance
Best filter for the input parameters.
full : tuple

Output from scipy.optimize.brute with full output=True. (Returned when
full_output is True.)

empyscripts.fdesign.save_£filter (name, filt, full=None)
Save DLF-filter to shelve.

empyscripts.fdesign.load_filter (name, full=False)
Load saved DLF-filter from shelve.

empyscripts.fdesign.plot_result (filt, full, cvar="amp’, prntres=True)
QC the inversion result.

Parameters - filt, full as returned from fdesign.design with full_output=True
- cvar as used for fdesign.design.
- If prntres is True, it calls fdesign.print_result as well.

empyscripts.fdesign.print_result (filt, full=None, cvar="amp’)
Print best filter information.

10 Chapter 2. License information

empyscripts Documentation, Release 0.3.1

Parameters - filt, full as returned from fdesign.design with full_output=True
- cvar as used for fdesign.design.

class empyscripts.fdesign.Ghosh (name, lhs, rhs)
Simple Class for Theoretical Transform Pairs.

Named after D. P. Ghosh, honouring his 1970 Ph.D. thesis with which he introduced the digital filter method
to geophysics ([Ghosh_1970]).

empyscripts.fdesign.jo0_1 (a=1)
Hankel transform pair JO_1 (/Anderson_1975]).

empyscripts.fdesign.jo0_2 (a=1)
Hankel transform pair JO_2 ([Anderson_1975]).

empyscripts.fdesign.jo0_3 (a=1)
Hankel transform pair JO_3 (/Guptasarma_and_Singh_1997]).

empyscripts.fdesign.j0_4 (f=1, rho=0.3, z=50)
Hankel transform pair JO_4 (/Chave_and_Cox_1982]).

Parameters f: float
Frequency (Hz)
rho : float
Resistivity (Ohm.m)
z : float
Vertical distance between source and receiver (m)

empyscripts.fdesign.jo0_5 (f=1, rho=0.3, z=50)
Hankel transform pair JO_S (/Chave_and_Cox_1982]).

Parameters f: float
Frequency (Hz)
rho : float
Resistivity (Ohm.m)
z : float
Vertical distance between source and receiver (m)

empyscripts.fdesign.jl_1 (a=1)
Hankel transform pair J1_1 ([Anderson_1975]).

empyscripts.fdesign.jl_2 (a=1)
Hankel transform pair J1_2 ([Anderson_1975]).

empyscripts.fdesign.jl_3(a=1)
Hankel transform pair J1_3 ([Anderson_1975]).

empyscripts.fdesign.jl_4 (f=1, rho=0.3, z=50)
Hankel transform pair J1_4 ([Chave_and_Cox_1982]).

Parameters f: float
Frequency (Hz)
rho : float
Resistivity (Ohm.m)
z : float

Vertical distance between source and receiver (m)

2.4. Code 11

empyscripts Documentation, Release 0.3.1

empyscripts.fdesign.jl_5 (f=1, rho=0.3, z=50)
Hankel transform pair J1_5 (/Chave_and_Cox_1982]).

Parameters f: float
Frequency (Hz)
rho : float
Resistivity (Ohm.m)
z : float
Vertical distance between source and receiver (m)

empyscripts.fdesign.sin_1 (a=1)
Fourier sine transform pair sin_1 (/Anderson_1975]).

empyscripts.fdesign.sin_2 (a=1)
Fourier sine transform pair sin_2 ([Anderson_1975]).

empyscripts.fdesign.sin_3 (a=1)
Fourier sine transform pair sin_3 ([Anderson_1975]).

empyscripts.fdesign.cos_1 (a=1)
Fourier cosine transform pair cos_1 ([Anderson_1975]).

empyscripts.fdesign.cos_2 (a=1)
Fourier cosine transform pair cos_2 ([Anderson_1975]).

empyscripts.fdesign.cos_3 (a=1)
Fourier cosine transform pair cos_3 ([Anderson_1975]).

empyscripts.fdesign.empy_ hankel (ftype, zsrc, zrec, res, freqtime, depth=[], aniso=None,
epermH=None, epermV=None, mpermH=None,
mpermV=None, htarg=None, verblhs=0, verbrhs=0)
Numerical transform pair with empymod.

All parameters except ftype, verblhs, and verbrhs correspond to the input parameters to empymod .
dipole. See there for more information.

Note that if depth=[], the analytical full-space solutions will be used (much faster).
Parameters ftype : str or list of strings
Either of: {‘j0°, ‘j1°, 52°, [‘j0°, ‘j1°1}
* ‘j0’: Analyze JO-term with ab=11, angle=45°
e ‘jI’: Analyze J1-term with ab=31, angle=0°
* ‘j2’: Analyze JO- and J1-terms jointly with ab=12, angle=45°

e [¢j0’, ¢j1°]: Same as calling empy_hankel twice, once with ‘j0’ and one
with ‘j1°; can be provided like this to fdesign.design.

verblhs, verbrhs: int
verb-values provided to empymod for lhs and rhs.

Note that ftype=’j2’ only works for fC, not for fI.

2.4.2 Calculate up- and down-going TM and TE modes

Add-on for empymod, [Werthmuller_2017]: Adjust [Hunziker_et _al 2015] for TM/TE-split. The
development was initiated by the development of https://github.com/empymod/csem-ziolkowski-and-slob
([Ziolkowski_and_Slob_2018]).

This is a stripped-down version of empymod with a lot of simplifications but an important addition. The modeller
empymod returns the total field, hence not distinguishing between TM and TE mode, and even less between up-

12 Chapter 2. License information

https://github.com/empymod/csem-ziolkowski-and-slob

empyscripts Documentation, Release 0.3.1

and down-going fields. The reason behind this is simple: The derivation of [Hunziker_et_al_2015], on which
empymod is based, returns the total field. In this derivation each mode (TM and TE) contains non-physical
contributions. The non-physical contributions have opposite signs in TM and TE, so they cancel each other out
in the total field. However, in order to obtain the correct TM and TE contributions one has to remove these
non-physical parts.

This is what this routine does, but only for an x-directed electric source with an x-directed electric receiver, and
in the frequency domain (src and rec in same layer). This version of dipole returns the signal separated into
T™M++, TM+-, TM-+, TM—, TE++, TE+-, TE-+, and TE- as well as the direct field TM and TE contributions.
The first superscript denotes the direction in which the field diffuses towards the receiver and the second super-
script denotes the direction in which the field diffuses away from the source. For both the plus-sign indicates the
field diffuses in the downward direction and the minus-sign indicates the field diffuses in the upward direction.
It uses empymod wherever possible. See the corresponding functions in empymod for more explanation and
documentation regarding input parameters. There are important limitations:

e ab == 11 [=> x-directed el. source & el. receivers]

* signal == None [=> only frequency domain]

e xdirect == False [=> direct field calc. in wavenr-domain]
e ht == ‘ftht’

* htarg == ‘key_201_2012’

* Options ft, ftarg, opt, and loop are not available.

e lsrc == lrec [=> src & rec are assumed in same layer!]

* Model must have more than 1 layer

¢ Electric permittivity and magnetic permeability are isotropic.
* Only one frequency at once.

This script is tested and works with empymod v1.4.4 onwards.

Theory

The derivation of [Hunziker_et_al_2015], on which empymod is based, returns the total field. Internally it also
calculates TM and TE modes, and sums these up. However, the separation into TM and TE mode introduces a
singularity at x = 0. It has no contribution in the space-frequency domain to the total fields, but it introduces
non-physical events in each mode with opposite sign (so they cancel each other out in the total field). In order to

obtain the correct TM and TE contributions one has to remove these non-physical parts.

To remove the non-physical part we use the file tmtemod. py in this directory. This routine is basically a heavily
simplified version of empymod with the following limitations outlined above.

So tmtemod. py returns the signal separated into TM++, TM+-, TM-+, TM—, TE++, TE+-, TE-+, and TE- as
well as the direct field TM and TE contributions. The first superscript denotes the direction in which the field
diffuses towards the receiver and the second superscript denotes the direction in which the field diffuses away
from the source. For both the plus-sign indicates the field diffuses in the downward direction and the minus-
sign indicates the field diffuses in the upward direction. The routine uses empymod wherever possible, see the
corresponding functions in empymod for more explanation and documentation regarding input parameters.

Please note that the notation in [Hunziker_et_al_2015] differs from the notation in [Ziolkowski_and_Slob_2018].

I specify therefore always, which notification applies, either Hunl5 or Ziol8.

We start with equation (105) in Hunl5:

. A 1 & FSNtm~S s~,tzi<s
Gt o) = Gl o) b g [(P ST) s
) 87T k=0 Ms Fs

20) [(TsGins €95
_cos(¢5)/ (Ihh; i Cq :)Jg(/ﬁ:T)lidli.
8w k=0 s Fs

2.4. Code 13

empyscripts Documentation, Release 0.3.1

Ignoring the incident field, and using J; = %Jl — Jp to avoid Jy-integrals, we get

. 1 [(T.gim (sildegts
Gz, \w) = — 2 =/ d
.L.L(w T (.d) {7 /;;:0 < s Fs O(KIT)K: K

2 * FSNtm‘s S~§Z's
+COS((b)/ (Ihh; + Cg, ’)JO(KT)KdK
k=0

87 Ns Iy
COS(2¢) /OC Fsg;flnh@s Cngz ;S
—_— : J dk.
4mr k=0 s * Fs 1(RT) "
From this the TM- and TE-parts follow as
2 -]. s ~§«€z 'S s Niez s
TE — cos(¢> / Csg Jo (k) ds cos < (g) dr,
471'7“
20) +1 [Tsis 20) [Tsih.s
™ = cos(2¢) + / Ihh Jo(kr)kdk — cos(29) / Ik, Ji(kr) ds.
8w k=0 Ns 4mr k=0 Ns

Equations (108) and (109) in Hun15 yield the required parameters g,t;;};s and gé‘z;s,
g;:;lL;S = PSu_WSu + P«Sd_WSd7
s = P 4 P
The parameters P+ and P?* are given in equations (81) and (82), P“* and PZ* in equations (A-8) and (A-9);

W and W¢ in equation (74) in Hun15. This yields

~te

9 = —Ly(zs —2+d")] + R, exp[—Ls(25 — 24+ ds +d7)]}
Lo(z — 2-14+d7)] + R exp[-Ts(z — z5-1 + ds + d¥)]},
—T(22, — 2 —)] + Ry exp[-T4(2/ — 2 +2d,)]}
+MSS —Lo(z 42" — 22,21)] + RS exp[—Ts(z — 2’ + 2d,)] }

where d* is taken from the text below equation (67). There are four terms in the right-hand side, two in the first
line and two in the second line. The first term in the first line is the integrand of TE+-, the second term in the first
line corresponds to TE++, the first term in the second line is TE-+, and the second term in the second line is TE-.

If we look at TE+-, we have

N
gzeersi =]\—j exp[—T's(225 — 2 — Z/)])

S

and therefore

cos(2¢) — 1
ks

TET™ =

> GRY . :
T a7 exp[—T5(2z5 — z — 2')|Jo(kr)Kk dk
k=0 + si¥s

2 * (Rt _
_COZiT(b) . 1§sf\7;s exp[—Ts(2zs — 2z — 2)]J1 (k1) dk.

We can compare this to equation (4.165) in Ziol8, with I < = 1 and slightly re-arranging it to look more alike, we
get

2
A Yy Cl _
Et ., = —Iyht d
zx; H A7rr2 /N o1 MH R exp(1)JO(HT)H K

14 Chapter 2. License information

empyscripts Documentation, Release 0.3.1

Ly /°° G <RI;1 R (5 = 0)

47‘(7‘3 i MH;l - MH;l(I{ZO)

exp(—T A7) Ji(kr)drK
—o I

G =) Ria(s =0)
dryrt Mpa(k=0)

The notation in this equation follows Zio18.

exp(—7 R*7).

The difference between the two previous equations is that the first one contains non-physical contributions. These
have opposite signs in TM+- and TE+-, and therefore cancel each other out. But if we want to know the specific
contributions from TM and TE we have to remove them. The non-physical contributions only affect the .J;-
integrals, and only for k = 0.

The following lists for all 8 cases the term that has to be removed, in the notation of Ziol8 (for the notation as in
Hun15 see the implementation in tmtemod. py):

TE+ — +C1(952 —y?) eXp(—71|h7|),
dryirt Mpy.a(k=0)

Gi(@? —y?) Ripa (s = 0)exp(—yih ™)

TE T =
Amyyrt My (k= 0) ’
TE+ — _C1(352 —y?) R;{;l(’{ = 0) exp(—y1h*7)
dryrt Mp.1(k=0))
TE~— = +Cl(x2 — y2) Rz;l(“i = O)RI_{;l(’f = 0) eXp(—'ylh**)
N 471"}/17’4 MH;l(K — 0))
ot = G@® —y?) exp(=yh7])
dryprt Mya(k=0)’
TM—+ = _Cl(xz - y2) RJ\;;l(H = 0) eXp(_'Ylh7+)
B 477,}/1744 Mv;l(,‘ﬁ‘, = O) ’
TM*T = _Cl(IZ ~y°) RX_/;l(” = 0) exp(—y1h"7)
B dryrd My.1(k = 0) ’
TM-—— = _C1($2 - yQ) R\t;l(‘% = ()>R17/;1("€ = 0) eXp(—'ylh__)
- ot My (k= 0) :

Note that in the first and fourth equations the correction terms have opposite sign as those in the fifth and eighth
equations because at £ = 0 the TM and TE mode correction terms are equal. Also note that in the second and
third equations the correction terms have the same sign as those in the sixth and seventh equations because at
+ = 0 the TM and TE mode reflection responses in those terms are equal but with opposite sign: R‘ﬂﬁ;l (k=0)=

—R‘jf;l(m =0).

Hun15 uses ¢, whereas Ziol8 uses z, y, for which we can use

2?2 —y?

r2

cos(2¢) = —

empyscripts.tmtemod.dipole (src, rec, depth, res, freqtime, aniso=None, eperm=None,
mperm=None, verb=2)
Return the electromagnetic field due to a dipole source.

This is a modified version of empymod.model.dipole (). It returns the separated contributions of
TM—, TM-+, TM+-, TM++, TMdirect, TE-, TE-+, TE+-, TE++, and TEdirect.

Parameters src, rec : list of floats or arrays

Source and receiver coordinates (m): [X, y, z]. The x- and y-coordinates can
be arrays, z is a single value. The x- and y-coordinates must have the same
dimension.

Sources or receivers placed on a layer interface are considered in the upper layer.

Sources and receivers must be in the same layer.

2.4. Code 15

empyscripts Documentation, Release 0.3.1

depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).
res : array_like

Horizontal resistivities tho_h (Ohm.m); #res = #depth + 1.
freqtime : float

Frequency f (Hz). (The name freqgtime is kept for consistency with
empymod.model.dipole (). Only one frequency at once.

aniso : array_like, optional
Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones.
eperm : array_like, optional
Relative electric permittivities epsilon (-); #eperm = #res. Default is ones.
mperm : array_like, optional
Relative magnetic permeabilities mu (-); #mperm = #res. Default is ones.
verb : {0, 1, 2, 3, 4}, optional
Level of verbosity, default is 2:
* 0O: Print nothing.
* 1: Print warnings.
e 2: Print additional runtime and kernel calls
* 3: Print additional start/stop, condensed parameter information.
* 4: Print additional full parameter information
Returns TM, TE : list of ndarrays, (nfreq, nrec, nsrc)

Frequency-domain EM field [V/m], separated into TM = [TM-, TM-+, TM+-,
TM++, TMdirect] and TE = [TE-, TE-+, TE+-, TE++, TEdirect].

However, source and receiver are normalised. So the source strength is 1 A and
its length is 1 m. Therefore the electric field could also be written as [V/(A.m2)].

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are removed.

2.4.3 Tools to print date, time, and version information

Add-on for empymod.

Print or return date, time, and package version information in any environment (Jupyter notebook, IPython con-
sole, Python console, QT console), either as html-table (notebook) or as plain text (anywhere).

This script was heavily inspired by:
* ipynbtools.py from qutip https://github.com/qutip
» watermark.py from https://github.com/rasbt/watermark

empyscripts.printinfo.versions (mode="print’, add_pckg=[], ncol=3)
Return date, time, and version information.

Print or return date, time, and package version information in any environment (Jupyter notebook, IPython
console, Python console, QT console), either as html-table (notebook) or as plain text (anywhere).

This script was heavily inspired by:
* ipynbtools.py from qutip https://github.com/qutip

» watermark.py from https://github.com/rasbt/watermark

16 Chapter 2. License information

https://github.com/qutip
https://github.com/rasbt/watermark
https://github.com/qutip
https://github.com/rasbt/watermark

empyscripts Documentation, Release 0.3.1

This is a wrapper for versions_html and versions_text.
Parameters mode : string, optional; {<’print’>, ‘HTML’, ‘Pretty’, ‘plain’, ‘html’}

Defaults to ‘print’:
 ‘print’: Prints text-version to stdout, nothing returned.
e ‘HTML : Returns html-version as IPython.display. HTML(html).
e ‘html’: Returns html-version as plain text.
e ‘Pretty’: Returns text-version as [Python.display.Pretty(text).
 ‘plain’: Returns text-version as plain text.

‘HTML’ and ‘Pretty’ require IPython.

add_pckg : packages, optional

Package or list of packages to add to output information (must be imported be-
forehand).

ncol : int, optional

Number of package-columns in html table; only has effect if mode="HTML"' or
mode="html". Defaults to 3.

Returns Depending on mode (HTML-instance; plain text; html as plain text; or

nothing, only printing to stdout).

Examples

>>> import pytest
>>> import dateutil
>>> from empyscripts import versions

Default values >>> versions()
Provide additional package >>> versions(‘plain’, pytest)
Provide additional packages >>> versions(‘HTML, [pytest, dateutil], ncol=5)

empyscripts.printinfo.versions_html (add_pckg=[], ncol=3)
HTML version.

See versions for details.

empyscripts.printinfo.versions_text (add_pckg=[])
Plain-text version.

See versions for details.

2.4. Code

17

empyscripts Documentation, Release 0.3.1

18 Chapter 2. License information

Bibliography

[Anderson_1975] Anderson, W. L., 1975, Improved digital filters for evaluating Fourier and Hankel transform
integrals: USGS, PB242800; pubs.er.usgs.gov/publication/70045426.

[Chave_and_Cox_1982] Chave, A. D., and C. S. Cox, 1982, Controlled electromagnetic sources for measuring
electrical conductivity beneath the oceans: 1. forward problem and model study: Journal of Geophysical
Research, 87, 5327-5338; DOI: 10.1029/JB087iB07p05327.

[Ghosh_1970] Ghosh, D. P., 1970, The application of linear filter theory to the direct interpretation of geoelectri-
cal resistivity measurements: Ph.D. Thesis, TU Delft; UUID: 88a568bb-ebee-4d7b-92df-6639b42da2b?2.

[Guptasarma_and_Singh_1997] Guptasarma, D., and B. Singh, 1997, New digital linear filters for Hankel JO and
J1 transforms: Geophysical Prospecting, 45, 745-762; DOI: 10.1046/j.1365-2478.1997.500292.x.

[Hunziker_et_al_2015] Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a lay-
ered vertical transverse isotropic medium: A new look at an old problem: Geophysics, 80(1), FI-F18;
DOI: 10.1190/ge02013-0411.1; Software: software.seg.org/2015/0001.

[Key_2009] Key, K., 2009, 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology
and synthetic studies for resolving thin resistive layers: Geophysics, 74(2), F9—F20; DOI: 10.1190/1.3058434.
Software: marineemlab.ucsd.edu/Projects/Occam/IDCSEM.

[Key_2012] Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77, F21-F30;
DOI: 10.1190/GEO2011-0237.1; Software: software.seg.org/2012/0003.

[Kong_2007] Kong, F. N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium:
Geophysical Prospecting, 55, 83—-89; DOI: 10.1111/j.1365-2478.2006.00585.x.

[Werthmuller_2017] Werthmiiller, D., 2017, An open-source full {3D} electromagnetic modeler for 1D VTI
media in Python: empymod: Geophysics, 82, WB9-WB19.; DOI: 10.1190/ge02016-0626.1.

[Ziolkowski_and_Slob_2018] Ziolkowski, A., and E. Slob, 2018, Introduction to Controlled-Source Electromag-
netic Methods: Cambridge University Press; expected to be published late 2018.

19

https://pubs.er.usgs.gov/publication/70045426
http://doi.org/10.1029/JB087iB07p05327
http://resolver.tudelft.nl/uuid:88a568bb-ebee-4d7b-92df-6639b42da2b2
http://dx.doi.org/10.1046/j.1365-2478.1997.500292.x
http://doi.org/10.1190/geo2013-0411.1
http://software.seg.org/2015/0001
http://doi.org/10.1190/1.3058434
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://dx.doi.org/10.1190/GEO2011-0237.1
http://software.seg.org/2012/0003
http://dx.doi.org/10.1111/j.1365-2478.2006.00585.x
http://doi.org/10.1190/geo2016-0626.1

empyscripts Documentation, Release 0.3.1

20 Bibliography

Python Module Index

e

empyscripts,5
empyscripts.fdesign, 6
empyscripts.printinfo, 16
empyscripts.tmtemod, 12

21

empyscripts Documentation, Release 0.3.1

22 Python Module Index

Index

C

cos_1() (in module empyscripts.fdesign), 12
cos_2() (in module empyscripts.fdesign), 12
cos_3() (in module empyscripts.fdesign), 12

D

design() (in module empyscripts.fdesign), 9

dipole() (in module empyscripts.tmtemod), 15

E

empy_hankel() (in module empyscripts.fdesign), 12

empyscripts (module), 5
empyscripts.fdesign (module), 6
empyscripts.printinfo (module), 16
empyscripts.tmtemod (module), 12

G

Ghosh (class in empyscripts.fdesign), 11

J

jO_1() (in module empyscripts.fdesign), 11
j0_2() (in module empyscripts.fdesign), 11
j0_3() (in module empyscripts.fdesign), 11
jO_4() (in module empyscripts.fdesign), 11
j0_5(0) (in module empyscripts.fdesign), 11
j1_1(0) (in module empyscripts.fdesign), 11
j1_2() (in module empyscripts.fdesign), 11
j1_3(0) (in module empyscripts.fdesign), 11
j1_4(0) (in module empyscripts.fdesign), 11
j1_50 (in module empyscripts.fdesign), 11

L

load_filter() (in module empyscripts.fdesign), 10

P

plot_result() (in module empyscripts.fdesign), 10
print_result() (in module empyscripts.fdesign), 10

S

save_filter() (in module empyscripts.fdesign), 10

sin_1() (in module empyscripts.fdesign), 12
sin_2() (in module empyscripts.fdesign), 12

sin_3() (in module empyscripts.fdesign), 12

\Y

versions() (in module empyscripts.printinfo), 16
versions_html() (in module empyscripts.printinfo), 17
versions_text() (in module empyscripts.printinfo), 17

23

	More information
	License information
	Manual
	Changelog
	Credits
	Code

	Bibliography
	Python Module Index

